Как известно, для защиты данных требуются надёжные хэш-функции (например цифровые подписи) и при этом они должны быстро обрабатываться. Так были созданы, как тогда показалось, мощные шифры из семейств MD4 и Snefru. Но, например для Snefru, в 1990 году были найдены коллизии, а затем они были обнаружены и для MD4, что ставило под сомнение всё семейство данных функций. Поэтому требовалось разработать новую, более криптоустойчивую хэш-функцию. К тому же все предыдущие хэш-функции были разработаны для 32-х битных процессоров, а уже началось появление нового поколения процессоров — 64-х битные. Поэтому в 1995 году Эли Бихам вместе с Россом Андерсоном разрабатывает новую мощную и быструю хэш-функцию под названием Tiger с размером значения хэша 192 бита, работавшую на 64-х битных машинах.
Для конкурса AES Эли Бихам вместе с Россом Андерсоном и Ларсом Кнудсеном создаёт симметричный блочный алгоритм шифрования Serpent («змея»), попавший в финал 2-го этапа конкурса. S-блоки были построены после тщательного изучения S-блоков в алгоритме DES, что позволило 16 раундовому новому алгоритму шифрования быть в 2 раза быстрее DES и при этом не менее надёжным. Затем была создана версия с 32-мя раундами, что ещё больше увеличило его криптостойкость. 32-битная версия не имеет уязвимостей.
Проект eSTREAM был создан для выявления новых потоковых шифров, подходящий для широкого распространения, образованный европейской сетью ECRYPT. Он был создан после провала всех 6 потоковых шифров проекта NESSIE. Данный проект был разделён на отдельные этапы и его главной целью являлся поиск алгоритма подходящего для различных приложений. Эли Бихам вместе с Дженифер Себбери разрабатывает потоковый шифр Py, подчиняющийся именно этому проекту. Он является одним из самых быстрых шифров в eSTREAM, около 2.85 циклов на байт на Pentium III (более чем в 2,5 раза быстрее RC4). Он имеет структуру, похожую на RC4, но здесь добавлен массив из 260 32-битных слов, которые индексируются путём перестановок байт, и в каждом раунде получается 64 бита. Затем, в январе 2007 года Бихам и Себбери создали более мощные версии данного потокового шифра: TPy, TPy6, TPypy.
Работая с Ади Шамиром, Эли Бихам разрабатывает дифференциальный криптоанализ, за который он и получил степень доктора. В 1990 году публикуется работа Эли Бихама и Ади Шамира «Differential Cryptanalysis of DES-like Cryptosystems», в которой они показывают как при помощи дифференциального криатоанализа за несколько минут можно взломать 8 раундовый DES. Так например для 6-раундового DES использование дифференциального криптоанализа привело к тому, что на обыкновенном персональном компьютере он был взломан менее чем за 0,3 секунды, используя 240 шифротекстов. При 8-раундовом DES было использовано 1500 шифротекстов, при этом время, затраченное на взлом шифра составило около 2 минут. С 15-ти и 16-ти раундовыми DES оказалось сложнее, но тем не менее они могут быть взломаны за и шага соответственно. Ниже приведена таблица, в которой показано количество шагов, необходимых для взлома DES, в зависимости от количества раундов.
В 2000 году Эли Бихам и его коллега Ор Дункельман публикуют статью "Cryptanalysis of the A5/1 GSM Stream Cipher", где они показывают как можно взломать потоковый шифр A5/1, который используется для шифрования в системах GSM. Атака на этот шифр показывает, что зная бит открытых текстов, можно за тактов взломать A5/1. Алекс Бирюков и Ади Шамир уже показывали взлом данного шифра, однако данная атака требовала предварительных вычислений в размере тактов и памяти в размере двух 73Gb жёстких дисков или тактов и памяти в размере четырёх 73Gb жёстких дисков. Атака же, придуманная Эли Бихамом и Ором Дункельманом требует около 2.36 минут вычислений для взлома шифра, при этом, если мы имеем бит открытых текстов, то необходимо всего 32Gb памяти и тактов или 2Gb памяти и тактов.
В 1998 году Эли Бихам и Ларс Кнудсен публикуют статью "Cryptanalysis of the ANSI X9.52 CBCM Mode", где они показывают атаку на данный шифр. Это вид тройного DES шифра. В данном шифре промежуточные значения обратной связи они изменяют ключевым OFB потоком независимо от открытого и шифротекста. Но Эли Бихам и Ларс Кнудсен смогли даже это использовать для атаки на шифр. Для атаки необходим один шифротекст из блоков и сложность анализа составляет .