Популярные
На фото Иоганн Петер Густав Лежён-Дирихле

Иоганн Петер Густав Лежён-Дирихле

немецкий математик, внёсший существенный вклад в математический анализ, теорию функций и теорию чисел
Биография

Биография

Дирихле (с учетом этимологии его правильнее было бы называть Диришле) родился в вестфальском городе Дюрене в семье почтмейстера. Его предки были выходцами из бельгийского городка Ришле (Richelet), этим обусловлено происхождение необычной для немецкого языка фамилии. Часть фамилии "Лежён" имеет аналогичное происхождение — деда называли «молодым человеком из Ришле» (фр. Le Jeune de Richelet).

В 12 лет Дирихле начал учиться в гимназии в Бонне, спустя два года — в иезуитской гимназии в Кёльне, где в числе прочих преподавателей его учил Георг Ом.

С 1822 по 1827 г. жил в качестве домашнего учителя в Париже, где вращался в кругу Фурье.

В 1825 г. Дирихле вместе с А. Лежандром доказал великую теорему Ферма для частного случая n=5. В 1827 г. молодой человек по приглашению Александра фон Гумбольдта устраивается на должность приват-доцента университета Бреслау (Вроцлав). В 1829 г. он перебирается в Берлин, где проработал непрерывно 26 лет, сначала как доцент, затем с 1831 г. как экстраординарный, а с 1839 г. как ординарный профессор Берлинского университета.

В 1831 г. Дирихле женится на Ребекке Мендельсон-Бартольди, сестре знаменитого композитора Феликса Мендельсон-Бартольди.

В 1855 г. Дирихле становится в качестве преемника Гаусса профессором высшей математики в Гёттингенском университете. В числе его достижений — доказательство сходимости рядов Фурье.

Научная деятельность

Дирихле принадлежит ряд крупных открытий в самых разных областях математики, а также в механике и математической физике.

  • В анализе и математической физике он ввёл понятие условной сходимости ряда и дал признак сходимости. Доказал разложимость в ряд Фурье всякой монотонной кусочно-непрерывной функции. Высказал плодотворный Принцип Дирихле. Существенно продвинул теорию потенциала.
  • В теории чисел доказал теорему о прогрессии: последовательность {a + nb}, где a, b — взаимно простые целые числа, содержит бесконечно много простых чисел.

Помимо прямых учеников, лекции Дирихле оказали огромное влияние на Римана и Дедекинда.

Ученики

Среди учеников Дирихле были:

  • Леопольд Кронекер
  • Рудольф Липшиц
  • Фердинанд Эйзенштейн

Важнейшие труды

  • Sur la convergence des series trigonometriques qui servent a representer une fonction arbitraire entre des limites donnees (О сходимости тригонометрических рядов, служащих для представления произвольной функции в данных пределах, 1829)
  • Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enth?lt (Доказательство утверждения о том, что любая неограниченная арифметическая прогрессия с первым членом и шагом, являющимися целыми числами и не имеющих общего делителя, содержит бесконечное число простых чисел (теорема Дирихле), 1837)

Труды в русском переводе

  • Дирихле П. Г. Л. О сходимости тригонометрических рядов, служащих для представления в данных пределах произвольной функции. В кн.: Разложение функций в тригонометрические ряды. Харьков, 1914. c. 1–23.
  • Дирихле (Лежен) П. Г. Лекции по теории чисел. М.–Л.: ОНТИ, 1936.
Поделиться: