Эйлер — автор более чем 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и др.
Почти полжизни провёл в России, где внёс существенный вклад в становление российской науки. В 1726 году он был приглашён работать в Санкт-Петербург, куда переехал годом позже. С 1731 по 1741, а также с 1766 года был академиком Петербургской Академии Наук (в 1741—1766 годах работал в Берлине, оставаясь одновременно почётным членом Петербургской Академии). Хорошо знал русский язык и часть своих сочинений (особенно учебники) публиковал на русском. Первые русские академики-математики (С. К. Котельников) и астрономы (С. Я. Румовский) были учениками Эйлера. Некоторые из его потомков до сих пор живут в России.
Леонард Эйлер родился в 1707 году в семье базельского пастора, друга семьи Бернулли. Рано проявил математические способности. Начальное обучение получил дома под руководством отца, учившегося некогда математике у Якоба Бернулли. Пастор готовил старшего сына к духовной карьере, однако занимался с ним и математикой — как в качестве развлечения, так и для развития логического мышления. Одновременно с обучением в гимназии мальчик увлечённо занимался математикой, а в последние гимназические годы посещал университетские лекции младшего брата Якоба, Иоганна Бернулли.
20 октября 1720 года 13-летний Леонард Эйлер стал студентом факультета искусств Базельского университета. Но любовь к математике направила Леонарда по иному пути. Вскоре способный мальчик обратил на себя внимание профессора Иоганна Бернулли. Он передал одарённому студенту математические статьи для изучения, а по субботам пригласил приходить к нему домой, чтобы совместно разбирать непонятное. В доме своего учителя Эйлер познакомился и подружился с сыновьями Бернулли — Даниилом и Николаем, также увлечённо занимавшимися математикой.
8 июня 1724 года 17-летний Леонард Эйлер произнёс на латыни речь о сравнении философских воззрений Декарта и Ньютона и был удостоен учёной степени магистра.
В последующие два года юный Эйлер написал несколько научных работ. Одна из них, «Диссертация по физике о звуке», получившая благоприятный отзыв, была представлена на конкурс для замещения неожиданно освободившейся в Базельском университете должности профессора физики (1725). Но, несмотря на положительный отзыв, 19-летнего Эйлера сочли слишком юным, чтобы включить в число кандидатов на профессорскую кафедру. Надо отметить, что число научных вакансий в Швейцарии было совсем невелико. Поэтому братья Даниил и Николай Бернулли уехали в Россию, где как раз шла организация Академии наук; они обещали похлопотать там и о должности для Эйлера.
В начале зимы 1726 года Эйлеру сообщили из Санкт-Петербурга: по рекомендации братьев Бернулли он приглашён на должность адъюнкта по физиологии с окладом 200 рублей. Получение аванса для компенсации проездных расходов растянулось почти на год, и лишь 5 апреля 1727 года Эйлер навсегда покинул Швейцарию.
22 января 1724 года Пётр I утвердил проект устройства Петербургской Академии. 28 января вышел указ сената о создании Академии. Из 22 профессоров и адъюнктов, приглашённых в первые годы, оказалось 8 математиков, которые занимались также механикой, физикой, астрономией, картографией, теорией кораблестроения, службой мер и весов.
Одной из важнейших задач Академии стала подготовка отечественных кадров. Позднее при Академии были созданы университет и гимназия. В силу острой нехватки учебников на русском языке Академия обратилась к своим членам с просьбой составить такие руководства. Эйлер, хотя и числился физиологом, составил на немецком языке очень добротное «Руководство к арифметике», которое тут же было переведено на русский и служило не один год в качестве начального учебника. Перевод первой части выполнил в 1740 году первый русский адъюнкт Академии, ученик Эйлера Василий Адодуров. Это было первое систематическое изложение арифметики на русском языке. Ко всеобщему удивлению, Эйлер уже в следующем по приезде году стал бегло говорить по-русски.
В 1730 году, когда на русский престол вступила Анна Иоанновна, интерес к Академии упал. За годы своего правления императрица посетила Академию всего лишь один раз. Часть приглашённых профессоров стала возвращаться на родину. Освободившееся место профессора физики было предложено Эйлеру (1731), одновременно он получил увеличение оклада до 400 рублей. Ещё через два года Даниил Бернулли вернулся в Швейцарию, и Эйлер занял его кафедру, став академиком и профессором чистой математики с окладом 600 рублей (впрочем, Даниил Бернулли получал вдвое больше). Николай Бернулли, талантливый математик, скоропостижно умер от болезни вскоре после приезда в Россию, в 1726 году.
В один из последних дней 1733 года 26-летний Леонард Эйлер женился на своей ровеснице Катарине (нем. Katharina Gsell), дочери живописца (петербургского швейцарца) Георга Гзеля. Молодожёны приобрели дом на набережной Невы, где и поселились. В семье Эйлера родились 13 детей, но выжили 3 сына и 2 дочери.
Эйлер отличался феноменальной работоспособностью. По отзывам современников, для него жить означало заниматься математикой. А работы у молодого профессора было много: картография, всевозможные экспертизы, консультации для кораблестроителей и артиллеристов, составление учебных руководств, проектирование пожарных насосов и т. д. От него даже требуют составления гороскопов, каковой заказ Эйлер со всем возможным тактом переадресовал штатному астроному. Но всё это не мешает ему активно проводить собственные исследования.
За первый период пребывания в России он написал более 90 крупных научных работ. Значительная часть академических «Записок» заполнена трудами Эйлера. Он делал доклады на научных семинарах, читал публичные лекции, участвовал в выполнении различных технических заказов правительственных ведомств.
В 1735 году Академия получила задание выполнить срочное и очень громоздкое астрономическое (по другим данным, картографическое) вычисление. Группа академиков просила на эту работу три месяца, а Эйлер взялся выполнить работу за 3 дня — и справился самостоятельно. Однако перенапряжение не прошло бесследно: он заболел и потерял зрение на правый глаз.
В 1730-е годы Эйлер становится известен и в Европе. Двухтомное сочинение «Механика, или наука о движении, в аналитическом изложении», изданное в 1736 году, принесло ему мировую славу. В этой монографии Эйлер блестяще применил методы математического анализа к решению проблем движения в пустоте и в сопротивляющейся среде. «Тот, кто имеет достаточные навыки в анализе, сможет всё увидеть с необычайной лёгкостью и без всякой помощи прочитает работу полностью», — заканчивает Эйлер своё предисловие к книге. Начиная с этого момента, теоретическая механика становится прикладной частью математики.
Обстоятельства ухудшились, когда в 1740 году умерла императрица Анна Иоанновна и царём был объявлен малолетний Иоанн VI. «Предвиделось нечто опасное, — писал позднее Эйлер в автобиографии. — После кончины достославной императрицы Анны при последовавшем тогда регентстве… положение начало представляться неуверенным». В самом деле, в регентство Анны Леопольдовны Петербургская Академия окончательно приходит в запустение. Эйлер обдумывает возврат на родину. В конце концов он принимает предложение прусского короля Фридриха, который приглашал его в Берлинскую Академию на весьма выгодных условиях, на должность директора её Математического департамента. Академия создавалась на базе прусского Королевского общества, основанного ещё Лейбницем, но в те годы находившегося в удручающем состоянии.
Эйлер подал руководству Петербургской Академии прошение об отставке:
.
29 мая 1741 года разрешение Академии было получено. Эйлер был «отпущен» и утверждён почётным членом Академии с окладом 200 рублей. Взамен он обещал по мере своих сил помогать Петербургской Академии — и действительно, все проведённые в Пруссии годы Эйлер участвовал в публикациях Академии, редактировал математические отделы русских журналов, приобретал для Петербурга книги и инструменты. На квартире Эйлера, на полном пансионе, годами жили молодые русские учёные, командированные на стажировку. Известно об оживлённой переписке Эйлера с Ломоносовым, в творчестве которого он высоко ценил «счастливое сочетание теории с экспериментом». В 1747 году он дал благоприятный отзыв президенту Академии наук графу К. Г. Разумовскому о статьях Ломоносова по физике и химии, утверждая:
Этой высокой оценке не помешало даже то, что Ломоносов математических работ не писал и высшей математикой не владел.
В июне 1741 года Леонард Эйлер с женой, двумя сыновьями и четырьмя племянниками прибыл в Берлин. Он провёл там 25 лет и издал около 260 работ.
Первое время Эйлера встречают в Берлине доброжелательно, его приглашают даже на придворные балы. Король постоянно в отлучке из-за непрерывных войн, но работы у Эйлера немало. Помимо математики, он занимается многими практическими делами, включая лотереи, чеканку монет, прокладку нового водопровода и организацию пенсионного обеспечения.
В 1742 году вышло четырёхтомное собрание сочинений Иоганна Бернулли. Посылая его из Базеля Эйлеру в Берлин, старый учёный писал своему ученику: «Я посвятил себя детству высшей математики. Ты, мой друг, продолжишь её становление в зрелости». В берлинский период, одна за другой, выходят работы Эйлера: «Введение в анализ бесконечно малых» (1748), «Морская наука» (1749), «Теория движения Луны» (1753), «Наставление по дифференциальному исчислению» (лат. Institutiones calculi differentialis, 1755). Многочисленные статьи по отдельным вопросам печатаются в изданиях Берлинской и Петербургской Академий. В 1744 году Эйлер открывает вариационное исчисление. В его работах используются продуманная терминология и математическая символика, в значительной степени сохранившиеся до наших дней, изложение доводится до уровня практических алгоритмов.
В 1753 году Эйлер купил поместье в Шарлоттенбурге (пригород Берлина) с садом и участком. Мать известила Эйлера о смерти в Швейцарии его отца; вскоре она переехала к Эйлеру.
Огромную популярность приобрели в XVIII веке, а отчасти и в XIX-м, эйлеровские «Письма о разных физических и философических материях, написанные к некоторой немецкой принцессе…», которые выдержали свыше 40 изданий на 10 языках (в том числе 4 издания на русском). Это научно-популярная энциклопедия широкого охвата, написанная ярко и общедоступно.
По отзывам современников, Эйлер всю жизнь оставался скромным, жизнерадостным, чрезвычайно отзывчивым человеком, всегда готовым помочь другому. Однако отношения с королём не складываются: Фридрих находит нового математика невыносимо скучным, совершенно не светским, и обращается с ним пренебрежительно. В 1759 году умер Мопертюи, президент Берлинской Академии наук. Пост президента Академии король Фридрих II предложил Даламберу, но тот отказался. Фридрих, недолюбливавший Эйлера, всё же поручил ему руководство Академией, однако без титула президента.
Во время Семилетней войны русская артиллерия разрушила дом Эйлера; узнав об этом, фельдмаршал Салтыков немедленно возместил потери, а позже императрица Елизавета прислала от себя ещё 4000 рублей.
1765: новый шедевр Эйлера, «Теория движения твёрдых тел». В 1766 году опубликованы «Элементы вариационного исчисления». Именно здесь впервые появилось название нового раздела математики, созданного Эйлером и Лагранжем.
В 1762 году на русский престол вступила Екатерина II, которая осуществляла политику просвещённого абсолютизма. Хорошо понимая значение науки как для прогресса государства, так и для собственного престижа, она провела ряд важных, благоприятных для науки преобразований в системе народного просвещения и культуры. Императрица предложила Эйлеру управление математическим классом, звание конференц-секретаря Академии и оклад 1800 рублей в год. «А если не понравится, — говорилось в письме её представителю, — благоволит сообщить свои условия, лишь бы не медлил приездом в Петербург».
Эйлер сообщил в ответ свои условия:
Все эти условия были приняты. В письме от 6 января 1766 года Екатерина пишет канцлеру графу Воронцову:
.
Эйлер подал королю прошение об увольнении со службы, но никакого ответа не получил. Подал повторно — но Фридрих не желал даже обсуждать вопрос о его отъезде. В ответ на это Эйлер прекратил работать для Берлинской Академии.
Решающую поддержку Эйлеру оказали настойчивые ходатайства российского представительства от имени императрицы. 30 апреля 1766 года Фридрих наконец-то разрешил великому учёному покинуть Пруссию, отпустив вдогонку (в письмах того периода) несколько злобных острот. Правда, Кристофа, младшего сына Эйлера, служившего подполковником артиллерии (нем. Oberstleutnant), король наотрез отказался отпустить из армии. Позднее благодаря заступничеству Екатерины II он всё же смог присоединиться к отцу; в русской армии он дослужился до генерал-лейтенанта.
Эйлер возвращается в Россию, теперь уже навсегда.
В июле 1766 года 60-летний Эйлер, его семья и домочадцы (всего 18 человек) прибыли в российскую столицу. Сразу же по прибытии он был принят императрицей. Екатерина, теперь уже Вторая, встретила его как августейшую особу и осыпала милостями: пожаловала 8000 рублей на покупку дома на Васильевском острове и на приобретение обстановки, предоставила на первое время одного из своих поваров и поручила подготовить соображения о реорганизации Академии.
К несчастью, после возвращения в Петербург у Эйлера образовалась катаракта левого глаза — он перестал видеть. Вероятно, по этой причине обещанный пост вице-президента Академии он так и не получил. Однако слепота не отразилась на его работоспособности. Эйлер диктовал свои труды мальчику-портному, который всё записывал по-немецки. Число опубликованных им работ даже возросло; за полтора десятка лет второго пребывания в России он продиктовал более 400 статей и 10 книг.
1767—1770: работа над двухтомной классической монографией «Универсальная арифметика» (издавалась также под названиями «Начала алгебры» и «Полный курс алгебры»). На русском языке этот замечательный труд выходит сразу же (первый том: 1768), на немецком — два года спустя. Книга была переведена на многие языки и переиздавалась около 30 раз (трижды — на русском). Все последующие учебники алгебры создавались под сильнейшим влиянием книги Эйлера.
В эти же годы выходит трёхтомник «Оптика» (лат. Dioptrica, 1769—1771) и фундаментальное «Интегральное исчисление» (лат. Institutiones calculi integralis), тоже в 3 томах.
В 1771 году в жизни Эйлера произошли два серьёзных события. В мае в Петербурге случился большой пожар, уничтоживший сотни зданий, в том числе дом и почти всё имущество Эйлера. Самого учёного с трудом спасли. Все рукописи удалось уберечь от огня; сгорела лишь часть «Новой теории движения луны», но она быстро была восстановлена с помощью самого Эйлера, сохранившего до глубокой старости феноменальную память. Эйлеру пришлось временно переселиться в другой дом.
В сентябре того же года, по особому приглашению императрицы, в Санкт-Петербург прибыл для лечения Эйлера известный немецкий окулист барон Вентцель. После осмотра он согласился сделать Эйлеру операцию и удалил с левого глаза катаракту. Эйлер снова стал видеть. Врач предписал беречь глаз от яркого света, не писать, не читать — лишь постепенно привыкать к новому состоянию. Однако уже через несколько дней после операции Эйлер снял повязку, и вскоре потерял зрение снова. На этот раз — окончательно.
1772: «Новая теория движения Луны». Эйлер наконец завершил свой многолетний труд, приближённо решив задачу трёх тел.
В 1773 году по рекомендации Даниила Бернулли в Петербург приехал из Базеля ученик Бернулли, Никлаус Фусс. Это было большой удачей для Эйлера. Фусс обладал редким сочетанием математического таланта и умения вести практические дела, что и дало ему возможность сразу же после приезда взять на себя заботы о математических трудах Эйлера. Вскоре Фусс женился на внучке Эйлера. В последующие десять лет — до самой своей смерти — Эйлер преимущественно ему диктовал свои труды, хотя иногда пользовался «глазами старшего сына» и других своих учеников.
В 1773 году умерла жена Эйлера, с которой он прожил почти 40 лет; у них было три сына (младший сын Христофор впоследствии был генерал-лейтенантом российской армии и командиром Сестрорецкого оружейного завода). Это было большой потерей для учёного, искренне привязанного к семье. Вскоре Эйлер женился на её сводной сестре Саломее.
1779: выходит «Всеобщая сферическая тригонометрия», первое полное изложение всей системы сферической тригонометрии.
Эйлер активно трудился до последних дней. В сентябре 1783 года 76-летний учёный стал ощущать головные боли и слабость. 7 (18) сентября после обеда, проведённого в кругу семьи, беседуя с академиком А. И. Лекселем о недавно открытой планете Уран и её орбите, он внезапно почувствовал себя плохо. Эйлер успел произнести: «Я умираю», — и потерял сознание. Через несколько часов, так и не приходя в сознание, он скончался от кровоизлияния в мозг.
«Он перестал вычислять и жить», — сказал Кондорсе на траурном заседании Парижской Академии наук (фр. Il cessa de calculer et de vivre).
Его похоронили на Смоленском лютеранском кладбище в Петербурге. Надпись на памятнике гласила: «Здесь покоятся бренные останки мудрого, справедливого, знаменитого Леонарда Эйлера».
В 1955 году прах великого математика был перенесён в «Некрополь XVIII века» на Лазаревском кладбище Александро-Невской лавры. Плохо сохранившийся надгробный памятник при этом заменили.
По отзывам современников, по характеру Эйлер был добродушен, незлобив, практически ни с кем не ссорился. К нему неизменно тепло относился даже Иоганн Бернулли, тяжёлый характер которого испытали на себе его брат Якоб и сын Даниил. Для полноты жизни Эйлеру требовалось только одно — возможность регулярного математического творчества. В то же время он был жизнерадостен, общителен, любил музыку, философские беседы.
Эйлер был заботливым семьянином, охотно помогал коллегам и молодёжи, щедро делился с ними своими идеями. Известен случай, когда Эйлер задержал свои публикации по вариационному исчислению, чтобы молодой и никому тогда не известный Лагранж, независимо пришедший к тем же открытиям, смог опубликовать их первым. Лагранж всегда с восхищением относился к Эйлеру и как к математику, и как к человеку; он говорил: «Если вы действительно любите математику, читайте Эйлера».
Академик С. И. Вавилов писал: «Вместе с Петром I и Ломоносовым, Эйлер стал добрым гением нашей Академии, определившим её славу, её крепость, её продуктивность».
«Читайте, читайте Эйлера, он — наш общий учитель», — любил повторять и Лаплас (фр. Lisez Euler, lisez Euler, c'est notre ma?tre ? tous.). Труды Эйлера с большой пользой для себя изучали и «король математиков» Карл Фридрих Гаусс, и практически все знаменитые учёные XVIII—XIX веков.
С 1766 года Эйлер проживал в доходном доме по адресу: Николаевская набережная, 15 (с перерывом, вызванным сильным пожаром). В советское время улица была переименована в «Набережную лейтенанта Шмидта». На доме установлена мемориальная доска, сейчас в нём располагается средняя школа.
Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. С точки зрения математики, XVIII век — это век Эйлера. Если до него достижения в области математики были разрознены и не всегда согласованы, то Эйлер впервые увязал анализ, алгебру, тригонометрию, теорию чисел и др. дисциплины в единую систему, и добавил немало собственных открытий. Значительная часть математики преподаётся с тех пор «по Эйлеру».
Благодаря Эйлеру в математику вошли общая теория рядов, удивительная по красоте «формула Эйлера», операция сравнения по целому модулю, полная теория непрерывных дробей, аналитический фундамент механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, число e, обозначение i для мнимой единицы, гамма-функция с её окружением и многое другое.
По существу именно он создал несколько новых математических дисциплин — теорию чисел, вариационное исчисление, теорию комплексных функций, дифференциальную геометрию поверхностей, специальные функции. Другие области его трудов: диофантов анализ, астрономия, оптика, акустика, статистика и т. д. Познания Эйлера были энциклопедичны; кроме математики, он глубоко изучал ботанику, медицину, химию, теорию музыки, множество европейских и древних языков.
Биографы отмечают, что Эйлер был виртуозным алгоритмистом. Он неизменно старался довести свои открытия до уровня конкретных вычислительных методов.
Эйлер охотно участвовал в научных дискуссиях, из которых наибольшую известность получили:
Во всех упомянутых случаях Эйлер отстаивал правильную позицию.
П. Л. Чебышёв писал: «Эйлером было положено начало всех изысканий, составляющих общую теорию чисел». Большинство математиков XVIII века занимались развитием анализа, но Эйлер пронёс увлечение древней арифметикой через всю свою жизнь. Благодаря его трудам интерес к теории чисел к концу века возродился.
Эйлер продолжил исследования Ферма, ранее высказавшего (под влиянием Диофанта) ряд разрозненных гипотез о натуральных числах. Эйлер строго доказал эти гипотезы, значительно обобщил их и объединил их в содержательную теорию чисел. Он ввёл в математику исключительно важную «функцию Эйлера» и сформулировал с её помощью «теорему Эйлера». Эйлер создал теорию сравнений и квадратичных вычетов, указав для последних критерий Эйлера.
Он опроверг гипотезу Ферма о том, что все числа вида — простые; оказалось, что делится на 641.
Доказал утверждение Ферма о представлении нечётного простого числа в виде суммы двух квадратов.
Дал одно из решений задачи о четырех кубах.
Эйлер доказал Великую теорему Ферма для и , создал полную теорию непрерывных дробей, исследовал различные классы диофантовых уравнений, теорию разбиений чисел на слагаемые.
Он открыл, что в теории чисел возможно применение методов математического анализа, положив начало аналитической теории чисел. В основе её лежат тождество Эйлера и общий метод производящих функций.
Эйлер ввёл понятие первообразного корня и выдвинул гипотезу, что для любого простого числа p существует первообразный корень по модулю p; доказать это он не сумел, позднее теорему доказали Лежандр и Гаусс. Большое значение в теории имела другая гипотеза Эйлера — квадратичный закон взаимности, также доказанный Гауссом.
Одна из главных заслуг Эйлера перед наукой — монография «Введение в анализ бесконечно малых» (1748). В 1755 году выходит дополненное «Дифференциальное исчисление», а в 1768—1770 годах — три тома «Интегрального исчисления». В совокупности это фундаментальный, хорошо иллюстрированный примерами курс, с продуманной терминологией и символикой, откуда многое перешло и в современные учебники. Собственно современные методы дифференцирования и интегрирования были опубликованы в данных трудах.
Основание натуральных логарифмов было известно ещё со времён Непера и Якоба Бернулли, однако Эйлер дал настолько глубокое исследование этой важнейшей константы, что с тех пор она носит его имя. Другая исследованная им константа: постоянная Эйлера — Маскерони.
Он делит с Лагранжем честь открытия вариационного исчисления, выписав уравнения Эйлера — Лагранжа для общей вариационной задачи. В 1744 году Эйлер опубликовал первую книгу по вариационному исчислению («Метод нахождения кривых, обладающих свойствами максимума либо минимума»).
Эйлер значительно продвинул теорию рядов и распространил её на комплексную область, получив при этом знаменитую формулу Эйлера. Большое впечатление на математический мир произвели ряды, впервые просуммированные Эйлером, в том числе не поддававшийся до него никому ряд обратных квадратов:
Современное определение показательной, логарифмической и тригонометрических функций — тоже его заслуга, так же как их символика и обобщение на комплексный случай. Формулы, часто именуемые в учебниках «условия Коши — Римана», более правильно было бы назвать «условиями Даламбера — Эйлера».
Он первый дал систематическую теорию интегрирования и используемых там технических приёмов, нашёл важные классы интегрируемых дифференциальных уравнений. Он открыл эйлеровы интегралы — ценные классы специальных функций, возникающие при интегрировании: бета-функция и гамма-функция Эйлера. Одновременно с Клеро вывел условия интегрируемости линейных дифференциальных форм от двух или трёх переменных (1739). Первый ввёл двойные интегралы. Получил серьёзные результаты в теории эллиптических функций, в том числе первые теоремы сложения.
С более поздней точки зрения, действия Эйлера с бесконечными рядами не всегда могут считаться корректными (обоснование анализа было проведено лишь полвека спустя), но феноменальная математическая интуиция практически всегда подсказывала ему правильный результат. Впрочем, дело было не только в интуиции, Эйлер действовал здесь достаточно сознательно, во многих важных отношениях его понимание смысла расходящихся рядов и операций с ними превосходило стандартное понимание XIX века и послужило основой современной теории расходящихся рядов, развитой в конце XIX — начале XX века.
В элементарной геометрии Эйлер обнаружил несколько фактов, не замеченных Евклидом:
Второй том «Введения в анализ бесконечно малых» (1748) — это первый в мире учебник по аналитической геометрии и основам дифференциальной геометрии. Термин аффинные преобразования впервые введён в этой книге вместе с теорией таких преобразований.
В 1760 году вышли фундаментальные «Исследования о кривизне поверхностей». Эйлер обнаружил, что в каждой точке гладкой поверхности имеются два нормальных сечения с минимальным и максимальным радиусами кривизны, и плоскости их взаимно перпендикулярны. Вывел формулу связи кривизны сечения поверхности с главными кривизнами.
1771 год: опубликовано сочинение «О телах, поверхность которых можно развернуть на плоскость». В этой работе введено понятие развёртывающейся поверхности, то есть поверхности, которая может быть наложена на плоскость без складок и разрывов. Эйлер, однако, даёт здесь вполне общую теорию метрики, от которой зависит вся внутренняя геометрия поверхности. Позже исследование метрики становится у него основным инструментом теории поверхностей.
Эйлер много внимания уделял представлению натуральных чисел в виде сумм специального вида и сформулировал ряд теорем для вычисления числа разбиений.
Он исследовал алгоритмы построения магических квадратов методом обхода шахматным конем.
При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок, ввёл в рассмотрение числа Эйлера.
Множество работ Эйлера посвящены математической физике: механике, гидродинамике, акустике и др. В 1736 году вышел трактат «Механика, или наука о движении, в аналитическом изложении», знаменующий новый этап в развитии этой древней науки. 29-летний Эйлер отказался от традиционного геометрического подхода к механике и подвёл под неё строгий аналитический фундамент. По существу, с этого момента механика становится прикладной математической дисциплиной.
В 1755 году публикуются «Общие принципы движения жидкостей», в которых положено начало теоретической гидродинамике. Выведены основные уравнения гидродинамики (уравнение Эйлера) для жидкости без вязкости. Разобраны решения системы для разных частных случаев.
В 1765 году в книге «Теория движения твёрдых тел» Эйлер математически описал кинематику твёрдого тела конечных размеров (до него исследовалось в основном движение точки). Он ввёл в математику углы Эйлера и теорему вращения. Его имя также носят кинематическая формула распределения скоростей в твёрдом теле, уравнения (Эйлера — Пуассона) динамики твёрдого тела, важный случай интегрируемости в динамике твёрдого тела.
Эйлер обобщил принцип наименьшего действия, довольно путано изложенный Мопертюи, и указал на его основополагающее значение в механике. К сожалению, он не раскрыл вариационный характер этого принципа, но всё же привлёк к нему внимание физиков, которые позднее выяснили его фундаментальную роль в природе.
Эйлер много работал в области небесной механики. Он заложил основу теории возмущений, позднее завершённой Лапласом, и разработал очень точную теорию движения Луны. Эта теория оказалась пригодной для решения насущной задачи определения долготы на море, и английское Адмиралтейство выплатило за неё Эйлеру специальную премию.
Основные труды Эйлера в этой области:
Эйлер исследовал поле тяготения не только сферических, но и эллипсоидальных тел, что представляло собой существенный шаг вперёд.
В 1757 году Эйлер впервые в истории нашёл формулы для определения критической нагрузки при сжатии упругого стержня. Однако в те годы эти формулы не могли найти практического применения.
Почти сто лет спустя, когда во многих странах — и прежде всего в Англии — стали строить железные дороги, потребовалось рассчитать прочность железнодорожных мостов. Модель Эйлера принесла практическую пользу в проведении экспериментов.
В честь Эйлера названы:
Полное собрание сочинений Эйлера, издаваемое с 1909 года Швейцарским обществом естествоиспытателей, до сих пор не завершено; планировался выпуск 75 томов, из них вышло 73:
Восемь дополнительных томов будут посвящены научной переписке Эйлера (свыше 3000 писем).
В 1907 году российские и многие другие учёные отметили 200-летие великого математика.
В канун его 300-летия (2007) в Петербурге состоялся международный юбилейный форум и был снят кинофильм о жизни Эйлера. В том же году в Петербурге, у входа в Международный Институт Эйлера, был открыт памятник Эйлеру работы скульптора А. Г. Дёмы.
В 2007 году Центробанк РФ выпустил памятную монету в ознаменование 300-летия со дня рождения Л. Эйлера. Портрет Эйлера помещался также на швейцарскую 10-франковую банкноту (6-я серия) и на почтовые марки Швейцарии, России и Германии.
Почтовая марка СССР,
1957 год
Почтовая марка ГДР, посвящённая Леонарду Эйлеру, 1983, 20 пфеннигов (Михель 2825, Скотт 2371)
Серебряная монета России 2007 года
Швейцарская банкнота с портретом молодого Эйлера
Очень многие факты в геометрии, алгебре и комбинаторике, доказанные Эйлером, повсеместно используются в олимпиадной математике.
15 апреля 2007 года была проведена интернет-олимпиада для школьников по математике, посвящённая 300-летию со дня рождения Леонарда Эйлера, происходившая при поддержке ряда организаций. В декабре 2008 — марте 2009 года проводится математическая олимпиада имени Леонарда Эйлера для восьмиклассников, призванная отчасти заменить им утрату регионального и заключительного этапов Всероссийской математической олимпиады для 8 классов.