Taimanov, I. A. The Weierstrass representation of closed surfaces in $Rsp 3$. (Russian) Funktsional. Anal. i Prilozhen. 32 (1998), no. 4, 49—62, 96; translation in Funct. Anal. Appl. 32 (1998), no. 4, 258—267 (1999)
Taimanov, I. A. Topological obstructions to the integrability of geodesic flows on nonsimply connected manifolds. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 2, 429—435, 448; translation in Math. USSR-Izv. 30 (1988), no. 2, 403—409).
Taimanov, I. A. Topology of Riemannian manifolds with integrable geodesic flows. (Russian) Trudy Mat. Inst. Steklov. 205 (1994), Novye Rezult. v Teor. Topol. Klassif. Integr. Sistem, 150—163; translation in Proc. Steklov Inst. Math. 1995, no. 4 (205), 139—150.
Новиков С. П., Тайманов И. А. Название: Современные геометрические структуры и поля. Издательство: МЦНМО. ISBN 5-94057-102-6.
Taimanov, Iskander A. Modified Novikov-Veselov equation and differential geometry of surfaces. Solitons, geometry, and topology: on the crossroad, 133—151, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997.
Тайманов И. А. Лекции по дифференциальной геометрии. ISBN 5-93972-467-1.
Bolsinov, Alexey V.; Taimanov, Iskander A. Integrable geodesic flows with positive topological entropy. Invent. Math. 140 (2000), no. 3, 639—650.
Konopelchenko, B. G.; Taimanov, I. A. Constant mean curvature surfaces via an integrable dynamical system. J. Phys. A 29 (1996), no. 6, 1261—1265.
Babenko, I. K.; Taimanov, I. A. On nonformal simply connected symplectic manifolds. (Russian) Sibirsk. Mat. Zh. 41 (2000), no. 2, 253—269, i; translation in Siberian Math. J. 41 (2000), no. 2, 204—217.
Taimanov, Iskander A. Surfaces of revolution in terms of solitons. Ann. Global Anal. Geom. 15 (1997), no. 5, 419—435.